Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evidence of the Meyer-Neldel rule in InGaAsN alloys and the problem of determining trap capture cross sections

Identifieur interne : 00C111 ( Main/Repository ); précédent : 00C110; suivant : 00C112

Evidence of the Meyer-Neldel rule in InGaAsN alloys and the problem of determining trap capture cross sections

Auteurs : RBID : Pascal:03-0350166

Descripteurs français

English descriptors

Abstract

Deep-level transient spectroscopy measurements have been performed on the quaternary semiconductor InGaAsN. A series of as-grown and annealed metalorganic chemical-vapor-deposited and molecular-beam-epitaxy samples with varying composition were studied. We observed a deep hole trap with activation energy ranging between 0.5 and 0.8 eV in all samples. The data clearly obey the Meyer-Neldel rule (MNR) with an isokinetic temperature of 350 K. We show that great care must be used in extracting capture cross sections (σ) from materials that obey the MNR. In fact, we argue that it is probably not possible to determine σ from the detrapping rate alone. One must measure both trapping and detrapping rates. © 2003 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:03-0350166

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Evidence of the Meyer-Neldel rule in InGaAsN alloys and the problem of determining trap capture cross sections</title>
<author>
<name sortKey="Johnston, Steven W" uniqKey="Johnston S">Steven W. Johnston</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>National Renewable Energy Laboratory, Golden, Colorado 80401</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Colorado</region>
</placeName>
<wicri:cityArea>National Renewable Energy Laboratory, Golden</wicri:cityArea>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Ecole Polytechnique de Montreal, Montreal H3C 3A7, Canada</s1>
</inist:fA14>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Ecole Polytechnique de Montreal, Montreal H3C 3A7</wicri:regionArea>
<wicri:noRegion>Montreal H3C 3A7</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Crandall, Richard S" uniqKey="Crandall R">Richard S. Crandall</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>National Renewable Energy Laboratory, Golden, Colorado 80401</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Colorado</region>
</placeName>
<wicri:cityArea>National Renewable Energy Laboratory, Golden</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Yelon, Arthur" uniqKey="Yelon A">Arthur Yelon</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>National Renewable Energy Laboratory, Golden, Colorado 80401</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Colorado</region>
</placeName>
<wicri:cityArea>National Renewable Energy Laboratory, Golden</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">03-0350166</idno>
<date when="2003-08-04">2003-08-04</date>
<idno type="stanalyst">PASCAL 03-0350166 AIP</idno>
<idno type="RBID">Pascal:03-0350166</idno>
<idno type="wicri:Area/Main/Corpus">00CD47</idno>
<idno type="wicri:Area/Main/Repository">00C111</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0003-6951</idno>
<title level="j" type="abbreviated">Appl. phys. lett.</title>
<title level="j" type="main">Applied physics letters</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Annealing</term>
<term>DLTS</term>
<term>Experimental study</term>
<term>Gallium arsenides</term>
<term>Gallium compounds</term>
<term>Hole traps</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>MOCVD coatings</term>
<term>Molecular beam epitaxy</term>
<term>Semiconductor epitaxial layers</term>
<term>Wide band gap semiconductors</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7361E</term>
<term>7350G</term>
<term>7320H</term>
<term>8115G</term>
<term>8115H</term>
<term>Etude expérimentale</term>
<term>Indium composé</term>
<term>Gallium arséniure</term>
<term>Gallium composé</term>
<term>Semiconducteur III-V</term>
<term>Semiconducteur bande interdite large</term>
<term>Piège trou</term>
<term>DLTS</term>
<term>Recuit</term>
<term>Revêtement MOCVD</term>
<term>Epitaxie jet moléculaire</term>
<term>Couche épitaxique semiconductrice</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Deep-level transient spectroscopy measurements have been performed on the quaternary semiconductor InGaAsN. A series of as-grown and annealed metalorganic chemical-vapor-deposited and molecular-beam-epitaxy samples with varying composition were studied. We observed a deep hole trap with activation energy ranging between 0.5 and 0.8 eV in all samples. The data clearly obey the Meyer-Neldel rule (MNR) with an isokinetic temperature of 350 K. We show that great care must be used in extracting capture cross sections (σ) from materials that obey the MNR. In fact, we argue that it is probably not possible to determine σ from the detrapping rate alone. One must measure both trapping and detrapping rates. © 2003 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0003-6951</s0>
</fA01>
<fA02 i1="01">
<s0>APPLAB</s0>
</fA02>
<fA03 i2="1">
<s0>Appl. phys. lett.</s0>
</fA03>
<fA05>
<s2>83</s2>
</fA05>
<fA06>
<s2>5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Evidence of the Meyer-Neldel rule in InGaAsN alloys and the problem of determining trap capture cross sections</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>JOHNSTON (Steven W.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CRANDALL (Richard S.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>YELON (Arthur)</s1>
</fA11>
<fA14 i1="01">
<s1>National Renewable Energy Laboratory, Golden, Colorado 80401</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Ecole Polytechnique de Montreal, Montreal H3C 3A7, Canada</s1>
</fA14>
<fA20>
<s1>908-910</s1>
</fA20>
<fA21>
<s1>2003-08-04</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>10020</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2003 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>03-0350166</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Applied physics letters</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Deep-level transient spectroscopy measurements have been performed on the quaternary semiconductor InGaAsN. A series of as-grown and annealed metalorganic chemical-vapor-deposited and molecular-beam-epitaxy samples with varying composition were studied. We observed a deep hole trap with activation energy ranging between 0.5 and 0.8 eV in all samples. The data clearly obey the Meyer-Neldel rule (MNR) with an isokinetic temperature of 350 K. We show that great care must be used in extracting capture cross sections (σ) from materials that obey the MNR. In fact, we argue that it is probably not possible to determine σ from the detrapping rate alone. One must measure both trapping and detrapping rates. © 2003 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C61E</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70C50G</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70C20H</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A15G</s0>
</fC02>
<fC02 i1="05" i2="3">
<s0>001B80A15H</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>7361E</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>7350G</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>7320H</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>8115G</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>8115H</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Gallium composé</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Gallium compounds</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Semiconducteur bande interdite large</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Wide band gap semiconductors</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Piège trou</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Hole traps</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>DLTS</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>DLTS</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Recuit</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Annealing</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Revêtement MOCVD</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>MOCVD coatings</s0>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Epitaxie jet moléculaire</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Molecular beam epitaxy</s0>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Couche épitaxique semiconductrice</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Semiconductor epitaxial layers</s0>
</fC03>
<fN21>
<s1>246</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0331M000050</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00C111 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00C111 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:03-0350166
   |texte=   Evidence of the Meyer-Neldel rule in InGaAsN alloys and the problem of determining trap capture cross sections
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024